Computational Framework for Biotechnological Research

Sequence analysis

The DNA sequences of thousands of organisms have been decoded and stored in databases. This sequence information is analyzed to determine genes that encode polypeptides (proteins), RNA genes, regulatory sequences, structural motifs, and repetitive sequences. A comparison of genes within a species or between different species can show similarities between protein functions, or relations between species (the use of molecular systematics to construct phylogenetic trees). Bioinformatics helps to bridge the gap between genome and proteome projects--for example, in the use of DNA sequences for protein identification.

Another aspect of bioinformatics in sequence analysis is annotation, which involves computational gene finding to search for protein-coding genes, RNA genes, and other functional sequences within a genome. Not all of the nucleotides within a genome are genes. Within the genome of higher organisms, large parts of the DNA do not serve any obvious purpose. This so-called junk DNA may, however, contain unrecognized functional elements. Bioinformatics helps to bridge the gap between genome and proteome projects--for example, in the use of DNA sequences for protein identification.

 
 
News
Activities